REAPPRAISAL OF THE STRUCTURE FOR THE ALKALOID BUDDAMIN FROM BUDDLEYA DAVIDII

Frank R. Stermitz* and Guy H. Harris
Department of Chemistry, Colorado State University
Fort Collins, Colorado 80523 USA

<u>Summary</u>: The structure of the alkaloid buddamin, isolated from <u>Buddleya davidii</u> cannot be correct, based upon the reported spectral data. An alternate structure is proposed, which also suggests that buddamin is an artifact of the isolation procedure.

Structure 1 was recently proposed 1 for buddamin, an isolate obtained from a methanol Soxhlet extraction of <u>Buddleya davidii</u> Franchet, followed by differential pH separation (NH₃ basification) and low pressure column chromatography. The molecular formula $C_{10}H_{15}NO_{5}$ was proposed based on an M⁺ ion at m/z 229 (0.21% relative intensity). The mass spectrum also showed an m/z 197 (2.8%) and all other fragments were interpreted as arising from this unit. Ir spectral data were assigned as 3460 and 3410 cm⁻¹ (OH), 1625 cm⁻¹ (C=C) <u>and</u> N-oxide. Also reported were 13 C and 1 H nmr spectra. The assignment of a 1625 cm⁻¹ band to an N-oxide, the assignment of a 13 C nmr chemical shift of 74.64 ppm to C-2, and the rare juxtaposition of aminoalcohol functional groups in 1 led us to search for a simpler interpretation of the data.

Analogies were seen between part of the reported data and that for the recently synthesized² compound 2. Such a structure was originally suggested³ for specionin, but the synthetic 2 and specionin were not identical and the new structure 3 is now proposed² for specionin. Closer analogs, however, are represented by 4, which is the acid-catalyzed rearrangement product from treatment⁴ of aucubigenin (the aucubin aglycone) and the synthetic² 5. The reported¹ ¹³C and ¹H nmr data for buddamin are completely consistent with its formulation as 6, with the spectral comparisons for 4, 5, and 6 given in Table 1.

(The data for 4 is taken from Ref. 4, that for 5 from Ref. 2, and that for 6 from Ref. 1. We have reversed the carbon assignments for C-5 and C-9 given in Ref. 4.)

Our proposed structure 6 has the molecular formula $C_{10}H_{15}NO_3$ (MW 197) rather than $C_{10}H_{15}NO_5$ (MW 229) as proposed for buddamin, but the intensity (0.21%) of the m/z 229 peak and the presence of an m/z 197 ion from which the entire fragmentation scheme derives is consistent with our formulation rather than 1.

Since aucubin is a constituent of <u>Buddleya</u> species,⁵ it seems likely that buddamin is an aucubin-derived artifact as specionin appears to be a catalpol-derived artifact.^{2,3} The general mechanism proposed⁴ for formation of 4, suffices to explain 6 as well.

<u>Acknowledgements</u> — This work was supported by National Science Foundation grant CHE-8213714. We thank our colleagues R. Arslanian, C. Dodson, D. Gardner, M. Gonzalez and E. Petty for helpful discussions.

References

- 1. E. Roder, H. Wiedenfeld, and A. Hoenig, Planta Medica, 51, 164 (1985).
- 2. E. Van der Eycken, P. Callant and M. Vandewalle, <u>Tetrahedron Letters</u>, 26, 367 (1985).
- 3. C. C. Chang and K. Nakanishi, J. Chem. Soc., Chem. Comm., 605 (1983).
- 4. A. Bianco, M. Guiso, C. Iavarone, P. Passacantilli and C. Trogolo, <u>Tetrahedron</u>, **40**, 1191 (1984).
- 5. A. R. Trimm and R. Hill, Biochem. J., 50, 310 (1952).

(Received in USA 13 August 1985)